
Work-in-Progress: A Novel Clock Synchronization
System for Large-Scale Clusters

Zhuochen Fan∗†, Xiaodong Li∗†, Yanwei Xu†, Yuqing Li‡, Tong Yang∗, Steve Uhlig§
∗School of Computer Science, and National Engineering Laboratory for Big Data Analysis Technology and Application,

Peking University, China †Theory Lab, Central Research Institute, 2012 Labs, Huawei Technologies Co., Ltd., China
‡School of Cyber Science and Engineering, Wuhan University, China

§School of Electronic Engineering and Computer Science, Queen Mary University of London, UK

Abstract—Clock synchronization is essential in real-time ap-
plications of large-scale clusters. State-of-the-art Huygens clock
synchronization reduces synchronization errors through offset
probing loop correction between data center servers. However,
Huygens does not offer a solution for large-scale clusters. In
this paper, we propose a novel and scalable CAT-Sync clock
synchronization system for large-scale clusters, which includes
three key techniques: optimal probe topology Construction,
probing channel Assignment, and Time-slice synchronization. In
CAT-Sync, the workload of each host is the same and will not
increase with the expansion of the cluster size. Our CAT-Sync
system achieves a stable clock synchronization accuracy within
2 microseconds on 60 virtual machines, and the average clock
offset for the entire synchronization process is improved by about
44.8% compared to Huygens.

Index Terms—clock synchronization, cluster, probe, offset,
topology, edge coloring, broadcast, time slice

I. INTRODUCTION

A. Background and Motivations

With the development of high-performance computing tech-
nology and services, the scale of computer systems needed
to handle existing workloads continues to expand. Many
distributed applications nowadays require the use of networks
of clusters of host devices [1]. Clock synchronization is es-
sential in clustered system applications, providing support for
functions such as data sharing, coordination between devices,
and interaction at specified times.

Large-scale cluster clock synchronization is based on pre-
cise synchronization between the clocks of two hosts. The
mainstream clock synchronization schemes, including the
widely used NTP [2], PTP [3], DTP [4], Huygens [5], etc.,
send probes in the form of timestamped packets. The key idea
of packet probing is to determine the offset between two clocks
by estimating the one-way delay (OWD). Specifically, when
Host A needs to synchronize Host B’s clock, Host A first
sends a probe packet 1 to Host B, and records the sending
time TXA. When Host B recognizes probe packet 1, it records
its receiving time RXB , sends a probe packet 2 to Host A,

The first two authors contribute equally. Corresponding authors: Yanwei
Xu (xuyanwei1@huawei.com) and Tong Yang (yangtongemail@gmail.com).
This work is supported by National Key R&D Program of China
(2022YFB2901504), and National Natural Science Foundation of China
(NSFC) (No. U20A20179).

and returns RXB and the sending time of probe packet 2 txB .
Host A records its receiving time rxA after receiving probe
packet 2. The probe host calculates OWD and offset from
the four timestamps mentioned above. If the local real-world
clock time is t, the offset of Host A and Host B relative to
t is ∆A and ∆B , then A’s clock time is tA = t + ∆A, B’s
clock time is tB = t + ∆B , and the offset between hosts is
∆AB = ∆B − ∆A. Under the assumption that the OWD of
probe packet 1 and probe packet 2 are the same, Host A can
calculate the OWD O = (RXB−TXA)+(rxA−txB)

2 and offset
∆AB = (RXB−TXA)−(txB−rxA)

2 .
Based on O and ∆AB , the probe host can modify the local

clock to synchronize with the probed host. Existing clock
synchronization schemes are based on these four timestamps,
which differ in how timestamps are generated and processed.

B. Prior Art and Limitations

Huygens [5] is a high-precision clock synchronization
scheme for data center networks, which reduces synchroniza-
tion errors through Loop Correction for offset probing between
servers (see the next paragraph for details). It uses SVM to
batch process all probe packets between any two hosts in a
certain time interval, to filter out path noise and obtain the
offset between the two clocks. Thus, the main factor affecting
the accuracy of offset measurement is whether the round-trip
path is symmetrical, e.g., the number of switch hops passed by
the round-trip probing path between nodes may be different.

Since clock synchronization is symmetrical and transitive,
i.e., ∆AB = ∆B − ∆A = −∆BA, ∆AC = ∆AB + ∆BC ,
ideally the sum of the loop clock offset is 0. However, due to
measurement errors, the measured loop offset sum is often dif-
ferent from 0. To ensure optimal synchronization performance,
Huygens uses the minimum norm solution to distribute the
offset errors of the loop to different paths. Specifically, given
the probing topology G(V,E), the corresponding loop matrix
A|L|×|E| are obtained, where each column corresponds to a
directed edge (i, j) ∈ E of G1, and each row corresponds to
a linear independent loop of ln ∈ L. If (i → j) ∈ ln is a
forward edge on E, the corresponding element of A is 1, the
reverse edge is -1, and the other is 0. The current offset probe

1i and j represent two servers in Huygens, and two hosts in this paper.

between all host clocks is denoted as M = [Me]|E|×1. The
loop error Y = [yl]|L|×1 is obtained through AM = Y . The
error yl of each loop is assigned to the contained probe edge
via ∆M = AT (AAT)−1Y , where ∆M = [||∆Me||]|E|×1,
and the offset correction corresponding to each edge e ∈ E
is ∆Me. Finally, the error compensation is performed on the
results, i.e., the offset optimized for the loop is M −∆M .

However, Huygens suffers from the following limitations
that prevent it from being deployed in large-scale clusters: 1)
Huygens does not specify how to build a probe topology; 2)
Huygens does not provide how to coordinate globally across
different probe sessions to avoid overwrite errors when a large
number of timestamps interact at the same time; 3) When the
clocks in the cluster are not synchronized, It is difficult for
Huygens to ensure that all clock gaps between the current
hosts are measured at the same time.

C. Our Solution

Based on the above analysis, we propose a novel clock
synchronization system named CAT-Sync for large-scale
clusters, designed to address the following challenges:

1) Probe Topology Building. Clock synchronization in a
cluster requires synchronizing all hosts to one of the refer-
ence hosts. Since there is an upper limit to the number of
probed sessions that each host can support, it is necessary
to synchronize the other hosts to the reference clock in a
hierarchical manner. However, the error increases with the
layers of probe relationships. Also, the effects of different
loops on error optimization is different under different probe
topologies. To address this, we propose an optimal probe
topology Construction scheme based on graph theory, to
achieve the lowest possible resource consumption. See Section
II-B for details.

2) Probe Session Conflict. The generation of hardware
timestamps relies on the time register in the network card,
which usually has only one register due to the cost limitation.
Thus, if the clock probe packet on the host does not read the
timestamp data into the system before the next packet arrives,
an overwrite error will occur. According to our tests, it takes
more than 100µs between the arrival of two probe packets.
To address this, we propose to exploit the edge coloring of
graphs to realize global time-division channel Assignment of
probe sessions. See Section II-C for details.

3) Probe Session Synchronization. The probe loop opti-
mizes the error on the premise that the clock gaps between
the hosts are measured at the same time. This is difficult to
guarantee if the synchronization between the clocks is not
reached. To address this, we propose a probing Time-slice
clock synchronization scheme based on message propagation
tree and controller broadcasting. See Section II-D for details.

II. SYSTEM DESIGN

A. Overall

The workflow of CAT-Sync is as follows. The cluster
controller is responsible for the management and control of
the entire clock synchronization cluster. Once the controller is

started, a listening port is opened to accept incoming connec-
tions from the host node. Upon receiving a connection request,
CAT-Sync creates a separate persistent TCP connection for
each host (for data transmission) and a regular heartbeat thread
to verify that the connection is still working properly. Session
management information can be obtained in real-time, e.g.,
hosts joining and leaving. This allows us to keep the probe
topology up to date. For a synchronous cluster composed of
all connected host nodes, the controller constructs the optimal
probe topology under the limitation of single-machine probe
sessions, and uses the edge coloring algorithm of the graph
to globally allocate the time probe channels. In each time
slice, according to the assigned probe tasks and session time-
division channels, hosts send probe packets to each other
through the connection and obtain the timestamps of the
probe packets. Controller broadcasts and message tree-based
messaging guarantee a globally synchronized start and end
of the current time slice. At the end of each time slice, the
probe host collects the corresponding timestamp data for all
probe sessions in the current time slice, calculates the clock
drift and offset with all the probed hosts, and reports them
to the controller. After receiving the probe results between
all hosts in the current time slice, the controller applies probe
loop optimization to correct errors. Then, it calculates the drift
of each host relative to the reference clock and the offset at
the end of the current time slice, and sends them to all hosts.
Finally, the host adjusts its local clock based on the received
optimized probe results.

B. Optimal Probe Topology Construction

Once the probe session management is performed on the
currently connected host node, the controller constructs the
optimal probe topology and maximizes the use of the probe
loop to optimize synchronization accuracy.

Since there is an upper limit on the number of probing ses-
sions that each host can support, the cluster probing topology
optimization problem is equivalent to: given the number of
nodes N and the maximum node degree K, we construct an
undirected connected graph G(V,E) such that each node has
at least in a loop ln ∈ L, where edge (i, j) ∈ E indicates that
there is a probing relationship between two nodes. Hence, our
construction must trade off the following two aspects:

1) The greater the distance d from the host v ∈ V to the
reference clock, the more the accuracy drops. Therefore,
it should be synchronized to the reference clock along
the shortest path |dv|;

2) The larger the cumulative sum of linear independent
loop lengths

∑
ln∈L |ln|, the more non-zero entries in

the probing loop matrix A, and the smaller the loop
correction error ||∆Me|| based on the minimum norm
solution.

1) To achieve the minimum synchronization distance
between nodes, we construct a hierarchical topology based
on the BFS spanning tree with the reference clock C0 as
the root node. We assume that each node is no more than d
hops from C0. Except for leaf nodes, the node degree should

be K, i.e., each node in d-th layer is connected to one node
in the (d − 1)-th layer, and is connected to K − 1 nodes in
the (d + 1)-th layer. Therefore, the total number of nodes in
the d-th layer is Nd = K(K − 1)d−1.

2) To maximize the synchronization accuracy of loop
correction, we add edges based on the above hierarchical
spanning tree topology, to form a set of linear indepen-
dent loops with the maximum cumulative sum of loop
lengths. For an undirected connected graph G(V,E), the
set of linear independent loops (i.e., the basis of the linear
equation system) based on the spanning tree T is uniquely
determined, where each independent loop corresponds to a
closed loop (f, g, . . . , f) consisting of any edge (f, g) on G-
T and the upper path (g, . . . , f) on T , respectively. Since
the number of nodes, edges, and loops satisfy the constraint
|L| = |E|−|V |+1, i.e., given the number of nodes |V |, more
edges provide more linearly independent loops. Therefore, the
optimal probe topology construction problem is equivalent to
how to add M = KN

2 −N +1 edges to the last layer to make
it K-edges connected, so that the loop length is the maximum
value of 2d+1. We propose a feasible solution of calculating
the set of feasible leaf nodes and the shortest path between
any two leaf nodes, and then sort the feasible edges based on
the shortest path and add edges in turn.

Remark (Figure 1). For the operation of adding edges to
leaf nodes to form probe loops described by 2), it can be
divided into the following two cases:

Case 1: When the last layer of leaf nodes are full, i.e.,

when the number of nodes satisfies N = 1 +
K(1−(K−1)d)

K−2 ,
the scheme of adding edges to the spanning tree is that the leaf
nodes are connected to the leaf nodes with an integer multiple
of K − 1 in turn. In Figure 1, node 8 is connected to nodes
5, 11, and 14.

Case 2: When the last layer of leaf nodes is dissatisfied:
i.e., when some leaf nodes of the d-th layer do not exist, each
K−1 edges that should connect them respectively is processed
as follows: 1) We arbitrarily select an edge and connect it to
its parent node; 2) We connect the remaining K−2 edges each
other between different sub-trees of C0 according to the two
vertices of each edge. Assuming that the leaf node 16 in Figure
1 does not exist, then the nodes 7, 10, and 13 that should be
connected to it are processed as: node 7 is connected to its
parent node 4, and nodes 10 and 13 are directly connected.

C0

1 2 3 4

5 6 7 8 9 10 11 12 13 14 15 16

Fig. 1. An example of optimal topology construction: K = 4.

C. Probing Channel Assignment

We choose a time channel for the probe session or probe
edge between hosts in the cluster. This is necessary to allow
the timestamp data of the current packet on each host to
be read before the next packet arrives, avoiding overwriting
when a large number of timestamps interact. It consists of
the following two steps: 1) We utilize the Misa-Gries coloring
algorithm [6] to color the edges of the probe topology (V,E)
so that any two edges are not the same color. In this way, we
can find an edge coloring scheme for any graph in polynomial
time, and the number of colors required is no more than K+1,
where K is the maximum node degree; 2) We perform a
global assignment of probing session channels according to
the obtained edge coloring scheme, and assign one color of
an edge to a unique time channel, as shown in Figure 2. Since
at most K + 1 channels are needed to complete the channel
allocation, a static channel allocation scheme can be generated
to ensure the efficiency of the coloring algorithm. When the
topology changes, such as when a host exits or a new host
joins, the channel allocation scheme of the probe session is
updated.

1

2 3

4

a b
c

b a

c

Fig. 2. An example of assigning time-division channels to each probing
session, where K = 3. It requires only 3 colors in total (for a, b, c).

D. Time-Slice Synchronization

Time-slice synchronization includes the simultaneous start
and simultaneous end of time slices. Simultaneous starts serve
the purpose of keeping the probing time channels aligned
on all hosts. Simultaneous ends deal with loop correction
probing errors. The precise synchronization of time slices
among hosts on the entire cluster depends on sending time-
slice end messages between the hosts and between the hosts
and controller. For this, the message only needs to include
the time slice ID. The message is forwarded and processed as
the highest priority message within the hosts and controller.
To avoid creating a storm of messages, the hosts or controller
should block the processing of subsequent messages with the
same ID after receiving an end message with a time slice
ID. It includes the following three steps: 1) We build a BFS
spanning tree based on the probe topology with each host
node as the root, and obtain the propagation path of the
time-slice synchronization message starting at that node as
the spanning tree rooted with it for any host; 2) In each
time slice: On the sending side, the host judges whether the
current time slice ends according to the local clock. Once it

ends, it immediately stops sending and receiving local probe
packets, and simultaneously sends time-slice end messages
to the controller and neighboring hosts along the message
propagation path; On the listening side, the host listens for
time-slice end messages from controller or other hosts. Once
received, it immediately stops the local probing, and forwards
time-slice end messages to all neighboring hosts; 3) After
the controller receives the first time-slice end message of the
host, it generates a broadcast message to all host nodes, and
synchronizes the entire hosts to enter a new time-slice.

III. EVALUATION

Our CAT-Sync is scalable to support clusters of arbitrary
size. Since the number of probes for each host is fixed, the
workload of each node is fixed. Therefore, large-scale cluster
deployment with any number of nodes can be supported.

A. Experimental Setup

Implementation. We build a cluster consisting of 60 virtual
machines for the experimental evaluation of CAT-Sync,
where the probe interval is 20000µs and the time-slice length
is 10s. We construct a physical star topology of 60 virtual
machines and an OVS switch. The number of channels is 7,
so for this topology: K = 6, d = 4 (see Section II-B). Based
on this physical network topology, we construct experiments
on CAT-Sync and Huygens logical topologies, respectively.

0 1 0 0 2 0 0 3 0 0 4 0 00
2
4
6
8

1 0
1 2
1 4
1 6

Of
fse

t (u
sec

)

T i m e (s e c)

 B a s e l i n e C A T - S y n c

Fig. 3. Clock offset for long-term synchronization.

Experimental platform. Our experiments are performed on
the Klonet network simulation experiment platform [7], whose
architecture includes: 1) infrastructure, 2) simulated network,
3) control framework, and 4) application interface2.

Baseline. We use the original Huygens [5] as the baseline
solution. We first select one machine as the controller device
and reference clock, and build loop topology around this

21) The infrastructure is the foundation of the platform network and com-
puting resources; 2) The simulated network is the virtual network deployed by
the platform; 3) The control framework is a collection of various control logics
of the platform, responsible for parsing instructions and executing various
operations; 4) The application interface is the interface for users to interact
with the platform and conduct experiments.

reference clock, with a maximum of 20 nodes in each loop. In
this experiment, we build 3 loops around the reference clock.

B. Experimental Results
From Figure 3, the experimental results show that the clock

offset of CAT-Sync has obvious advantages compared to
Huygens: While the offset of CAT-Sync has been relatively
stable around 100 seconds, the offset of Huygens does not
gradually stabilize until beyond 300 seconds. Finally, the offset
of CAT-Sync is absolutely stable within 2µs, while Huygens
is still in large fluctuations. During the entire synchronization
process, the average offset of CAT-Sync is 3.48µs, which
is 55.8% times that of Huygens. In other words, CAT-Sync
achieves 44.2% improvement over Huygens. In Figure 4, we
find the drift distribution of CAT-Sync is significantly closer
to the y-axis, which also demonstrates that its offset is better.

0 2 4 6 8 10 12 14
Offset (usec)

0

0.2

0.4

0.6

0.8

1

C
D

F
CAT-Sync
Baseline

Fig. 4. The CDF of CAT-Sync and Baseline on clock offset.

IV. CONCLUSION AND FUTURE WORK

This paper analyzes the limitations of the state-of-the-
art Huygens scheme and proposes a novel and scalable
CAT-Sync synchronization system specially designed for
large-scale clusters. CAT-Sync includes 3 key techniques and
achieves a stable clock offset of less than 2µs in the clusters
composed of 60 virtual machines. As future work, we plan to
further optimize the proposed 3 key techniques, expand the
cluster size for future experiments, and conduct full testbed
implementations on more real-world platforms.

REFERENCES

[1] N. Shivaraman, P. Schuster, S. Ramanathan, A. Easwaran, and S. Stein-
horst, “Cluster-based network time synchronization for resilience with
energy efficiency,” in Proc. RTSS, 2021, pp. 149–161.

[2] D. Mills, “Internet time synchronization: the network time protocol,”
IEEE Trans Commun, vol. 39, no. 10, pp. 1482–1493, 1991.

[3] J. C. Eidson, M. Fischer, and J. White, “Ieee-1588™ standard for a
precision clock synchronization protocol for networked measurement and
control systems,” in Proc. PTTI, 2002, pp. 243–254.

[4] K. S. Lee, H. Wang, V. Shrivastav, and H. Weatherspoon, “Globally
synchronized time via datacenter networks,” in Proc. SIGCOMM, 2016,
pp. 454–467.

[5] Y. Geng, S. Liu, Z. Yin, A. Naik, B. Prabhakar, M. Rosenblum, and
A. Vahdat, “Exploiting a natural network effect for scalable, fine-grained
clock synchronization,” in Proc. NSDI, 2018, pp. 81–94.

[6] J. Misra and D. Gries, “Finding repeated elements,” Sci Comput Program,
vol. 2, no. 2, pp. 143–152, 1982.

[7] J. Xie, W. Shan, C. Xiao, T. Ma, L. Chen, H. Yu, and G. Sun,
“Klonet: a network emulation platform for the technology innovation,”
Telecommunications Science, vol. 37, no. 10, pp. 66–75, 2021.

	Introduction
	Background and Motivations
	Prior Art and Limitations
	Our Solution

	System Design
	Overall
	Optimal Probe Topology Construction
	Probing Channel Assignment
	Time-Slice Synchronization

	Evaluation
	Experimental Setup
	Experimental Results

	Conclusion and Future Work
	References

